Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT
نویسندگان
چکیده
Although the newly developed second-generation anti-androgen drug enzalutamide can repress prostate cancer progression significantly, it only extends the survival of prostate cancer patients by 4-6 months mainly due to the occurrence of enzalutamide resistance. Most of the previous studies on AR antagonist resistance have been focused on AR signaling. Therefore, the non-AR pathways on enzalutamide resistance remain largely unknown. By using C4-2, CWR22Rv1 and LNCaP cell lines, as well as mice bearing CWR22Rv1 xenografts treated with either enzalutamide or metformin alone or in combination, we demonstrated that metformin is capable of reversing enzalutamide resistance and restores sensitivity of CWR22Rv1 xenografts to enzalutamide. We showed that metformin alleviated resistance to enzalutamide by inhibiting EMT. Furthermore, based on the effect of metformin on the activation of STAT3 and expression of TGF-β1, we propose that metformin exerts its effects by targeting the TGF-β1/STAT3 axis. These findings suggest that combination of metformin with enzalutamide could be a more efficacious therapeutic strategy for the treatment of castration-resistant prostate cancer.
منابع مشابه
Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a prominent role in tumorigenesis. Metformin exerts antitumorigenic effects in various cancers. This study investigated the mechanisms of metformin in TGF-β1-induced Epithelial-to-mesenchymal transition (EMT) in cervical carcinoma cells. METHODS cells were cultured with 10 ng/mL TGF-β1 to induce EMT and treated with or without metfor...
متن کاملReversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells
Dysregulation of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor (IGF) axis has been linked to reactive stroma dynamics in prostate cancer progression. IGF binding protein-3 (IGFBP3) induction is initiated by stroma remodeling and could represent a potential therapeutic target for prostate cancer. In previous studies a lead quinazoline-based Doxazosin® derivative, DZ-50, i...
متن کاملMiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells.
Epithelial-mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non-small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA)-related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TK...
متن کاملTransforming growth factor-β1 contributes to oxaliplatin resistance in colorectal cancer via epithelial to mesenchymal transition
Transforming growth factor-β1 (TGF-β1), secreted by main components of tumor microenvironment, is considered to be closely associated with cancer development and chemoresistance. The present study aimed to analyze the effects and mechanisms underlying TGF-β1-induced chemoresistance to oxaliplatin (LOH) in human colorectal cancer (CRC) cell lines. The cytotoxic effects of LOH subsequent to TGF-β...
متن کاملMechanisms navigating the TGF-β pathway in prostate cancer
Few pharmacotherapies are currently available to treat castration resistant prostate cancer (CRPC), with low impact on patient survival. Transforming growth factor-β (TGF-β) is a multi-functional peptide with opposite roles in prostate tumorigenesis as an inhibitor in normal growth and early stage disease and a promoter in advanced prostate cancer. Dysregulated TGF-β signaling leads to a cascad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017